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the fact that the end-group packing energy is less than 
in a normal crystal or in polytypes. In our opinion, this 
may be due to the presence, on the (001) faces of these 
crystals, of growth spirals repeating periodically the 
stacking sequence which depends on the content of the 
exposed ledge. In this way, near the anomalous inter- 
faces, stability is mainly provided by the side-packing 
energy which remains unaltered. Furthermore, the 
highly repulsive forces at the interface may be can- 
celled if the interlayer spacings are increased by a few 
tenths of an A or by the rearrangement of relaxed end- 
groups which was not taken into account in our model. 
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Abstract 

A new convolution method is presented for a rigorous 
LCAO calculation of the lattice-vibration effects on the 
X-ray scattering factors of crystals. The theory is 
applied to a lithium hydride crystal and a good 
agreement with experiment is obtained. 

Introduction 

Previous calculations of the X-ray scattering factors of 
crystals within the LCAO approximation have included 

0567-7394/79/060996-05501.00 

the lattice vibrations in a similar way to the free ion (or 
free atom) picture (Aikala & Mansikka, 1970, 1971, 
1972; Grosso & Parravicini, 1978). These calculations 
have involved the conception of crystal ions (or atoms). 
This inconsistency is avoided in the present work where 
the lattice vibrations are treated rigorously in the 
LCAO approximation with a convolution method. 

The most suitable crystal for an experimental check 
of this method is lithium hydride because it is the 
simplest ionic crystal with only four electrons per ion 
pair. Recently, several theoretical investigations have 
been published on this crystal. These include studies on 
directional and isotropic Compton profiles (Aikala, 
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1976; Paakkari, Halonen & Aikala, 1976; Grosso, 
Parravicini & Rosta, 1976) and magnetic susceptibility 
(Grosso & Parravicini, 1978). All these investigations 
utilize an ionic picture of the LiH crystal and employ 
the LCAO (Linear Combination of Atomic Orbitals) 
approximation, and the non-orthogonal ionic wave 
functions are orthogonalized symmetrically to each 
other. 

The scattering factors of LiH have been calculated 
by Waller & Lundqvist (1953), Westin, Waller & 
Lundqvist (1962), Hurst (1959), Kahane, Felsteiner & 
Opher (1973) and Grosso & Parravicini (1978). The 
first three calculations were only qualitative and in the 
fourth the comparison with the experimental data of 
Calder, Cochran, Griffiths & Lowde (1962) was 
performed in a simple way and considerable deviations 
occurred for some reflexions. The last one, however, 
shows good agreement with experiment. 

The authors have earlier calculated the scattering 
factors for several ionic crystals within the LCAO 
approximation (Aikala & Mansikka, 1970, 1971, 1972; 
Mansikka & Aikala, 1973). 

The numerical results in Table 1 have been published 
earlier as a preliminary report (Mikkola, Mansikka & 
Aikala, 1976). 

Theoretical 

We start our theoretical consideration from the well- 
known expression of the coherent X-ray scattering 
factor of a crystal 

F ( K ) =  J p(r) e-'K"d3 r (1) 
Vo 

for the reflexion K. Here, p(r) denotes the crystalline 
charge density, and V 0 is the volume of the unit cell. 
The density p(r) can be written as a superposition 

p( r )=  Y. p , ( r - -  R), (2) 
R 

where p~(r - R) is the contribution of the unit cell 
characterized by the lattice vector R. Substituting (2) 
into (1) and changing the order of summation and inte- 
gration yield 

F(K) = Y f p l ( r - -  R) e - iK' '  d 3 r. (3) 
R Vo 

Replacing r - R by r in each of the integrals, one 
obtains the integral representation 

F ( K ) =  J" pl(r) e-iK"d 3 r, (4) 
vc 

where V c represents the volume of a crystal. 

By choosing one of the ions in the unit cell as the 
origin of r, one can write 

pl(r ) - -  pa(r) + Pb(r-- R,) (5) 

for non-primitive crystals having a two-atom basis. 
Here, R~ stands for the position vector of the nearest 
neighbour to the central crystal ion a. Equations (4) 
and (5) now give 

F(K) = f pa(r) e - i K ' ' d  3 r + e iK'R f po(r) e -iK'r d 3 r. (6) 
Vc Vc 

For example, we can immediately find that the phase 
factor e ~KR~ takes the values +1 or - 1  for the NaC1 
structure depending on the parity of the reciprocal- 
lattice point K. 

The basic problem is how to find reasonable 
expressions for the overlapping localized densities pa 
and Pb. One possible choice is based on the LCAO 
method by defining the concept of a crystal ion. By 
employing L6wdin's orthogonalization technique, one 
can write the localized crystal-ion densities to represent 
Pa and Pb as follows (Aikala & Mansikka, 1970): 

- I  pi(r) = 2~p~(r) y (A)0,g  cp,(r-- R,) (i = a , b )  (7) 
g 

for a LiH crystal. Here, (A-1)0,g denote the elements of 
the inverse of the overlap matrix, ~pg is the one-electron 
wave function of the ion at Rg, while the factor two 
comes from the summation over the two spin states. 
The generalization of (7) into other crystals is straight- 
forward. 

We consider next the effect of the lattice vibrations 
on the above quantities by introducing the dis- 
placements lag of the ions from their equilibrium 
positions. Thus one can write 

--1 pl(r, la) = ~o~'(r- ~ )  y ( • )o,g (lao, la,, ...) 
g 

x ~pg(r- R g -  lag). (8) 

Let G(la) = G(la o, lat, .-.) be the displacement density. 
Hence, the average charge density is 

/3t(r) f ¢ ~ ( r - ~ ) Z  -1 = ( ~ ) 0 . g  (la) 
g 

× ~0g(r- R g -  lag) G(la) ~ d 3 lag,. (9) 
g~ 

In (9) there are an enormous number of displacement 
variables in each (A-~)0,g. Owing to the inversion 
symmetry of the system, various terms of the sum can, 
however, be integrated over lag, for g' :/: 0,g by 
neglecting la in the argument of (A-~)0,g without making 
an error larger than 0(laz). Thus there are only two 
displacement arguments per term which may be 
important. However, one has in (9) a convolution, 
which, as a smoothing operation, is not sensitive to the 
details of the functions to be convoluted. Therefore a 
satisfactory approximation will be obtained if (A-l)0,g 
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(ttt) in (9) is replaced by the static-lattice value (A-~)o.g. 
Within this approximation one gets 

--1 Pt(r) = Z ( A ) 0 , ,  f ~p~'(r--lio) 
g 

× ~pg(r -- Rg -- pg) l--I Gg,(Ftg,) d a pg,, (10) 
g' 

where the ions are taken to be independent oscillators. 
Hence, the displacement density can be written in the 
product form, and the integration of (10) term by term 
gives 

P i ( r )  = ( A - 1 ) o , o  f I~P0(r- !1o)12 G 0 ( } l  o) d 3 pt 0 

+ Z (d-1)0.g f tp~ (r -- ltt0) ~g(r -- Rg -- ptg) 
g ¢0 

x G0(~to) Gg(~tg) d 3 ~t o d 3 ~g. (11) 

The first term in (11) is a one-centre contribution and it 
contains the temperature damping factor in the form of 
the Fourier transform 

f Go(~t o) e iK'~ d 3 Ix o, (12) 

which, in the harmonic approximation, gives the 
conventional Debye-Waller factor of Gaussian type 
e -~K2. The inverse transform of this gives the displace- 
ment density, which is Gaussian, too. 

In the case of the two-centre term in (11), it is not 
possible to get a simple temperature damping factor, 
but convolution operations must be carried out 
explicitly before making the Fourier transform. Thus 
we get the expression 

e-iK.r d 3 Fi(K) = f pl(r) r 

= (A)o_ ~ e-Sg'f/(K) 

--1 + fe-iK'r x ( A ) o . , ~ ( r ) ~ g ( r - - R g ) d 3 r ,  
g¢0 

(13) 

where ~g denotes the convolution of tpg and Gg and 
f/(K) is the Fourier transform of I ~0ol 2. 

Practical procedures 

In the present case the wave functions of the ions are of 
the s type. Hence the convolution ~ of tp and G can be 
written 

(o(r)=(~/n)  3/2 f exp [ - i f ( r - r ' )  2] ~p(r') d 3 r',  (14) 

where ~ = 1/4B (B = the Debye-Waller exponent). By 
evaluating the integral (14) in the spherical polar 
coordinates with the z' axis parallel to r, we easily 
obtain 

oo 

?p(r) = (~ /n)vz (1 / r )  f {exp [--~(r - r ' )  21 
0 

- exp [-ff(r + r')Z]}r ' ~p(r') dr'. (15) 

Integral (15) may conveniently be evaluated by means 
of numerical integration. 

A practical method for the computation of the two- 
centre contributions to the scattering factors is to 
expand the corresponding charge density in terms of 
the invariant cubic harmonics (Altmann & Cracknell, 
1965), and by fitting the radial parts on the Slater-type 
basis functions. The Fourier transform can now be 
obtained using known analytical formulae (the cubic 
harmonics behave like the spherical ones). In order to 
determine the above expansion one has to calculate the 
radial parts Pt.m(r) of the expansion. By means of the 
normalized invariant cubic harmonics C7'(~) we can 
write 

pt.m(r) = ~o(r) ~ (A-')o.g J" C? ' (2 )~g ( r -  Rg) d 2 2. 
g¢O 

(16) 
For the calculation of the integral 

f C~"(~) ~g(r -- Rg) d z $, 

we first expand the function 

__ 2 1/2 ~g(Ir-- Rgl) = ~g[(r 2 2rRgLP, g + Rg) l 

in terms of the Legendre polynomials 

co 

cpg[(Ir 2 -- 2rRg Lfig) l/z] = Y u t (Rvr )  Pt(~. lig), 
/=0 

where (by denoting 2. l~g = cos 0) 

2 l + 1  n 
y 2 1/2 ut(Rg, r) - - -  ~g[(r 2 -- 2rRg cos 0 + Rg) ] 

2 
0 

x Pt(cos 0) sin 0 dO. 

(17) 

(18) 

Thus the integrals to be evaluated are of the type 

f CY'*(2)Pt(~.f~g) d 2 2. 

By using the formula 

P / ( ~ . l ~ g )  - -  - -  
47~ l 

2l + 1 Z Y~''  (l~g) Y~'(~), 
m ' = - - I  

we obtain 

f C~"(~)PI(LRg) d 2 

= [4n/(2l + 1)] ~. Y~t'* (l~g) J C7"(~) Ytm'(~) d 2 
m t 

= [4n/(2/+ 1)]Clm'(~g). (19) 

In the last step we have utilized the fact that Cy' is a 
linear combination of the YF's over m. 

Because of the invariance of the CJ~'s in the 
operations of the cubic point group, each equivalent 



S. MIKKOLA,  O. AIKALA AND K. M A N S I K K A  999 

neighbour gives an equal contribution to the sum. Thus Waller factors B a and B b and the scale-error parameter 
the total expansion can be written e so as to give optimal approximate equality: 

~0 ~ (A-l)o,g ~Og = ~ Pl,rn(r)C~(r), (20 )  
g¢:O l,m 

where 

p,,m(r ) 2n~o(r ) • -1 = (A)0,g,  Na,, Cf" (l~g,) 
g' 

fl 
2 1/2 x f ~g,[(r 2 -- 2rRg, cos 0 + Re,) ] 

0 

x Pt(cos 0) sin 0d0. (21) 

Here the summation index g' labels the different groups 
of equivalent lattice points, while the coefficient Nag, 
represents the number of equivalent points. The 0 
integration is conveniently carried out by numerical 
methods. 

Having computed the radial parts, the Fourier 
transforms can be performed by 

f -iK.r m d 3 e Pt, m (r) C l (~) r 

co 

= 4n(-i)tC'f"(K) f r2jt(Kr)Pt, m(r) dr, (22) 
o 

which is easily obtained by using the expansion of the 
plane wave e ;K'' into spherical harmonics. In (22), the 
jt's denote the spherical Bessel functions. Finally, when 
the Pl, m'S a r e  expressed by Slater-type functions 
(STO's), the integration can be carried out using 
known analytical formulae, and in consequence some 
laborious numerical integrations are avoided (Flannery 
& Levy, 1969). 

The fitting of theoretical values to experimental data 

According to the above treatment the structure factor 
can be written as follows: h k t 

111 
F(K) = exp (--B a K2)Fa(K) 2 oo 

2 2 0  

+ exp (--B o KZ)Fb(K) + F2(Ba, Bb, K), 311 
2 2 2  

(23) 4oo 
331 

where F~(K) and Fb(K ) represent the one-centre con- 420 4 2 2  
tributions of the ions a and b, respectively, while F 2 is 333 
the sum of the two-centre contributions. The phase 511 

4 4 0  
factor e -'xR, appearing in (6) is here included in the 531 
quantities F a, F b and F 2. To fit the theoretical values of 442 
F(K) to the experimental values corresponding to 6oo 

6 2 0  
temperature T, an additional fitting parameter, namely 533 
a scale coefficient, is introduced to account for the 622 
possible scale error of experimental data. Thus, one has 444 551  
to solve by the method of least squares the Debye-  711 

[exp (-BaKZ)Fa(K) + exp (--BoK2)Fo(K) 

+ F2(Ba, Bo, K)](1 + e) = Fexp(K ). (24) 

Because the one-centre terms are dominant, the 
solution can be carried out iteratively: first approxi- 
mations of the above parameters can be obtained using 
the conventional method by determining the DW 
factors and e for the total static structure factor, then 
the convolutions are evaluated and new estimates are 
obtained keeping the F z term as a constant. The 
operation is then repeated until convergence to the 
desired accuracy is obtained. 

Results and discussion 

The numerical results of the application of the above 
theory and computational procedures to the LiH 
crystal (Li ÷ : ls 2, H-  : ls 2) are presented in Table 1. The 
calculations were carried out by employing Clementi's 
free ion HF wave function for Li + and the simple flee- 
ion variational function for H-.  The ionic wave 
functions were orthogonalized to each other taking into 
account 42 different orders of neighbours, and the 
resulting inverse overlap matrix A -1 of the above cluster 
of ions was solved exactly. The cubic harmonic 
expansion was evaluated including the first five non- 
zero terms, i.e. up to the order l = 10. 

Table 1. One-centre (F1) and unconvoluted two-centre 
(F  2) contributions to the static scattering factors of  LiH 
due to the positive (F ÷) and negative (F-) ions, the 
temperature-corrected scattering factors of  LiH calcu- 
lated with the present convolution method, and the 

experimental data measured by Calder et al. (1962) 

F r F~- F~" F~ F . . . .  Fobs 

0.681 --0.027 1.780 --0.029 1-068 1.086 
0.497 --0.056 1.702 --0.025 2.040 2.032 
0.198 --0.022 1.439 --0.015 1.441 1.454 
0-122 0.006 1.282 --0.011 0.973 0.960 
0.106 --0.010 1-235 --0.010 I. 112 1.096 
0-066 --0.004 1-074 --0.007 0.887 0.888 
0.049 --0.001 0-973 --0-006 0.684 0.671 
0-045 0.000 0.943 --0-006 0.722 0.738 
0.032 0.000 0.836 --0.004 0.593 0.600 
0.026 --0.001 0.767 --0-003 0.480 0.474 
0-026 --0.002 0. 767 --0.004 0.480 0.472 
0.019 0.000 0.671 --0.003 0.412 0-414 
0.016 0.000 0.612 --0.003 0.343 0.354 
0.016 0.000 0.607 --0.002 0.348 0.359 
0.016 --0.002 0.607 --0.002 0.346 0-349 
0.013 --0.001 0.552 --0.002 0.294 0.299 
0.011 0-000 0.516 --0.002 0.250 0.248 
0.011 --0.001 0.504 --0.002 0.251 0.250 
0.009 0.000 0.463 --0.002 0.215 0.209 
0-008 0-000 0.435 --0.002 0.184 0.182 
0.008 --0.001 0.435 --0-001 0.185 0.179 
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Table 2. The Debye-Waller exponents and the 
normalization factors for a LiH crystal obtained by 
fitting the theoretical scattering factors to the experi- 
mental data of  Calder et al. (1962) in various 

approximations 

A means the present convolution treatment, in B the two-centre 
terms are included in the various one-centre terms, and in C no 
temperature damping at all is applied to the two-centre terms. 

B H- (A 2) BLI + (A 2 ) e (%) 

A 0.9525 + 0.1946 1.1270 + 0.0203 2.81 + 0.47 
B 0.9421 _+ 0.1990 1.1268 + 0.0203 2.80 +_ 0.46 
C 0.9138 _+ 0.1901 1-1240 +_ 0.0199 2.99 + 0.46 

i 

We may now see from the data of Table 1 that the 
agreement between theory and experiment (Calder, 
Cochran, Griffiths & Lowde, 1962) is good for all 
reflexions. We also find that the present theoretical 
scattering factors show a slight dependence on 
crystallographic directions, an effect which is also pre- 
dicted by the experimental data. 

In order to see whether it is essential or not to treat 
the two-centre terms by the present convolution 
method (A), the temperature corrections of these con- 
tributions were also determined with two other 
methods. In one of these methods (B), the two-centre 
terms were included in the crystal-ion contributions as 
in the work of Aikala & Mansikka (1970, 1971, 1972) 
and in the other (C) no temperature correction at all 
was applied to the small two-centre contributions. The 
corresponding Debye-Wal ler  and scale factors are 
given in Table 2. The results for the scattering and 
Debye-Wal ler  factors show no essential differences 
between various approximations. The main reason for 
this result is of course that the two-centre terms give 
only a slight contribution to the total scattering factor. 
This may also partly arise from the smoothing effects 
due to the employed expansion in cubic harmonics and 
the fitting of the radial density terms to the STO 
functions. Although the relative influence of the con- 
volution treatment in the two-centre terms is very large, 

the effect on the total scattering factors is unimportant  
because of the small relative magnitude of the two- 
centre contributions. The changes in the two-centre 
terms in different approximations are compensated by 
small variations in the fitting parameters BH-, BL~+ and 
e. This is the reason why the results of Grosso & 
Parravicini (1978) are in good agreement with experi- 
ment. Thus, when comparing the present theoretical 
data with experimental data, it is sufficient to use the 
static scattering factors of the crystal ions (including 
two-centre contributions) given in Table 1 and the 
parameters BH-, BLi+ and e in the fitting procedure. 
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